DIS'97 14th - 18th April Chicago, USA.

Jet Shapes at HERA

M. MARTINEZ

(Universidad Autónoma de Madrid)

for

ZEUS Collaboration

- Introduction.
- Jet Shape definition.
- Photoproduction Jet Shapes.
- Comparison with NLO calculations.
- DIS Neutral Current Jet Shapes.
- Comparison of γp and DIS NC.
- Comparison with e^+e^- and $p\overline{p}$.

INTRODUCTION

• Deep-Inelastic Scattering Processes.

- $-Q^2 > 100 \text{ GeV}^2.$
- -At least one jet with $E_T^{pri} > 14$ GeV and $-1 < \eta^{pri} < 2$.

• Hard Photoproduction Processes.

Direct Processes

Resolved Processes

- $-Q^2 < 4 \text{ GeV}^2.$
- -0.2 < y < 0.85
- At least one jet with $E_T^{jet} > 14$ GeV and $-1 < \eta^{jet} < 2$.

- The resolved processes dominate in the forward region.

- Multiple Interaction (MI) model:

More than one interaction per event

Reconstruction of Jets

• A cone algorithm in $\eta - \phi$ space is used to reconstruct jets with a radius R = 1 unit.

JET SHAPE DEFINITION

The jet shape is defined as the average fraction of the transverse energy of the jet which lies inside an inner cone of radius r concentric to the jet cone. $\Psi(\mathbf{r})$

$$\Psi(r) = \frac{1}{N_{jets}} \sum_{jets} \frac{\Sigma_{k < r} E_T(k)}{\Sigma_{k < R} E_T(k)}, \quad 0 < k < r$$

- The Jet Shapes are measured using the calorimeter.
- The Jet Shapes are corrected back to the hadron level.

Independent Fragmentation (The Simplest Model)

- The outgoing partons are assumed to fragment indepently.
- For each primary parton additional ϕ pairs are created and combined to form mesons.
- The sharing of longitudinal momentum is given by the fragmentation function f(z)
- The relative transverse momentum follows a gaussian distribution with a width of $\sim 100 \ \mathrm{MeV}$.

String Fragmentation (An Improved Model)

QCD Parton Radiation

• Final Parton Shower

- Multiparton processes are produced using MC simulations based in the Leading Logarithm Aproximations.

As the shower evolves, the virtuality of the partons diminish (a cut-off $Q^2 > N$ is introduced in order to keep α_i small).

• Colour Dipole Model

- The physical state can be described from the energy-momentum and polarization of all the dipoles.
- When one dipole radiates a gluon it is split into two dipoles.

- The effects of the fragmentation on the jet shapes are small.
- The Jet Shape is dictated mainly by QCD radiation.

• The broadening of the jet shape as η^{jet} increases is consistent with an increasing fraction of gluon jets.

• The broadening of the measured jet shape as η^{jet} increases is consistent with the increase of the fraction of the gluon jets predicted by PYTHIA once the uncertainty due to a possible underlying event is taken into account.

- The moderate E_T^{jet} -dependence of the measured jet shapes is not an artifact of a possible underlying event.
- The inclusion of the MI improves the description of the data in the lowest E_T^{jet} region.

- Jets are reconstructed using a cone algorithm as in the data.
- Up to three partons in the final state
 no more than two partons within a jet.
- In NLO, $(1-\Psi(r))$ is computed in order to avoid collinear singularities.

$$1 - \Psi | \mathbf{r}_{\text{T}} = \frac{\int_{r}^{\mathbf{R}} d\mathbf{E_{T}} \mathbf{E_{T}} [d\sigma(\gamma \mathbf{p}) - 3partons - \mathbf{X} - d\mathbf{E}_{T}]}{\mathbf{E}_{T}^{\text{jet}} \sigma(\mathbf{E}_{T}^{\text{jet}})_{LO}}$$

• $1 - \Psi(r)$ is $O(\alpha_s) \to \text{The jet shape is}$ calculated only to lowest nontrivial order.

G. Kramer and S. Salesch (Phys. Lett B 317 (1993) 218)M. Klasen and G. Kramer (DESY-Preprint 97-002)

- Renormalization scale : $\mu = E_T^{jet}$
- 1-loop α_s
- Resolved and Direct processes
- Weizsäcker-Williams approximation
- Parton distributions: Proton (CTEQ4) Photon (GRV-HO)
- Merging: R_{sep} (Ellis, Kunszt, Soper)

two partons are combined if

$$\Delta = \|\Delta v_{1,2}^2 + \Delta v_{1,2}^2\| \min \frac{E_T^{\text{jet } 2} + E_T^{\text{jet } 2}}{\max E_T^{\text{jet } 1}, E_T^{\text{jet } 2}} \|R\| R_{\text{sep}}$$

There is a strong dependence on μ and R_{sep}

- NLO QCD calculations at the parton level are able to describe the measured jet shapes.
- For the E_T^{jet} dependence with $R_{sep} = 1.4$, except for the lowest E_T^{jet} region.

• For the η^{jet} dependence the NLO calculations describe the data after choosing appropriately the value of R_{sep} in each η^{jet} region.

Jet Shapes in Neutral Current DIS

- LO + PS (PYTHIA) describes the high E_I^{jET} region very well.
- LO + QCDC + BGF + PS (DJANGO MEPS) produces jets slightly broader than the measured jets.
- LO + CDM + BGF (DJANGO CDM) is better in the high E_T^{jet} region than PS.

Jet Shapes in Neutral Current DIS

• A moderate E_T^{jet} -dependence of the measured jet shapes is observed: the jet shape narrows as E_T^{jet} increases.

Jet Shapes in Neutral Current DIS

- No significant dependence on η^{jet} is observed in the data.
- CDM Model seems to be better than the Parton Shower Model in the forward region.

NC DIS and γp Jet Shapes

• The observed differences increase as η^{jet} increases \rightarrow the resolved γp processes dominate in the forward region.

Comparison to e^+e^- and $p\overline{p}$

- ZEUS (NC DIS): Jets with $37 < E_T^{jet} < 45 \text{ GeV}$
- OPAL : Jets with $E^{jet} > 35 \text{ GeV}$
- CDF: Jets with $\mathbf{40} < E_T^{jet} < \mathbf{60} \; \mathbf{GeV}$
- ullet D0: Jets with $45 < E_T^{-} < 70~{
 m GeV}$

Comparison to e^+e^- and $p\overline{p}$

- ZEUS and OPAL \rightarrow High E_T^{jet} jets predominantly coming from quarks. The results from ZEUS and OPAL are very similar.
- CDF and DO \rightarrow contributions from high E_T^{jet} jets predominantly coming from gluons.

Summary and Conclusions

• The Jet Shapes in Photoproduction and DIS NC events have been measured for jets with $E_{\ell} > 14$ GeV.

• Jet Shapes in γp

- The effects of the fragmentation on the jet shapes are small. The shape of the jet is dictated mainly by the QCD radiation.
 - The broadening of the jet shape as increases is consistent with the increase of the fraction of gluon jets.
- The jet shape narrows as $E_T^{j\epsilon t}$ increases
- The inclusion of the MI (underlying event) improves the description of the lowest E_T^{jet} and highest η^{jet} regions.
- The lowest order QCD non-trivial contribution to the jet shape is able to describe the γp jet shapes (the parameter R_{sep} must be included).

• Jet Shapes in NC DIS

- No significant dependence of the shape of the jet as η^{jet} increases is observed.
 - The jet shape narrows as \mathbb{Z} -increases.
- Leading Logarithm parton shower Monte Carlo calculations without C_T hard subprocesses produce jets slighly narrower compared to the data at low E_T^{jet} .

- The inclusion of the next QCD order subprocesses (CDM or MEPS) improves the description of the data.
- The Colour Dipole Model for the QCD cascade seems to follow the data better that a Parton Shower Model in the highest E_T^{jet} and η^{jet} regions.

• Comparison γp and NC DIS Jet Shapes.

- The photoproducted jets are broader than the jets in NC DIS: the differences increase as η^{rr} increases and decrease as E_T^{jrt} increases (due to the dominance of resolved processes, which produce final state gluon jets, at large η^{jrt} and low E_T^{jrt}).

• Comparison to e^+e^- and $p\overline{p}$.

The jet shapes measured in NC DIS $\mathbb{Z}_{\mathbb{Z}}$ in GeV² by ZEUS are very similar to the measured in $\mathbb{Z}_{\mathbb{Z}}$ by OPAL, and narrower than those in $p\bar{p}$ by CDF and D0 (for similar ranges in $E_{\mathbb{Z}}$).